Skip to main content
Log in

A conjugate of the lytic peptide Hecate and gallic acid: structure, activity against cervical cancer, and toxicity

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Conjugate compounds constitute a new class of molecules of important biological interest mainly for the treatment of diseases such as cancer. The N-terminus region of cationic peptides has been described as important for their biological activity. The aim of this study was to evaluate the lytic peptide Hecate (FALALKALKKALKKLKKALKKAL) and the effect of conjugating this macromolecule with gallic acid (C7H6O5) in terms of structure, anti-cancer activity, and toxicity. An N-terminus GA-Hecate peptide conjugate was synthesized to provide information regarding the relationship between the amino-terminal region and its charge and the secondary structure and biological activity of the peptide; and the effects of gallic acid on these parameters. Peptide secondary structure was confirmed using circular dichroism (CD). The CD measurements showed that the peptide has a high incidence of α-helical structures in the presence of SDS and LPC, while GA-Hecate presented lower incidence of α-helical structures in the same chemical environment. An evaluation of the anti-cancer activity in HeLa cancer cells indicated that both peptides are active, but that coupling gallic acid at the N-terminus decreased the activity of the free peptide. GA-Hecate showed lower activity in non-tumor keratinocyte cells but higher hemolytic activity. Our findings suggest that the N-terminus of Hecate plays an important role in its activity against cervical cancer by affecting it secondary structure, toxicity, and hemolytic activity. This study highlights the importance of the N-terminus in antitumor activity and could provide an important tool for developing new anti-cancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aruoma OI, Murcia A, Butler J, Halliwell B (1993) Valuation of antioxidant and prooxidant actions of gallic acid and its derivatives. J Agric Food Chem 41:1880–1885

    Article  CAS  Google Scholar 

  • Asnaashari M, Farhoosh R, Sharif A (2014) Antioxidant activity of gallic acid and methyl gallate in triacylglycerols of Kilka fish oil and its oil-in-water emulsion. Food Chem 159:439–444. doi:10.1016/j.foodchem.2014.03.038

    Article  CAS  PubMed  Google Scholar 

  • Baranska-Rybak W, Pikula M, Dawgul M, Kamysz W, Trzonkowski P, Roszkiewicz J (2013) Safety profile of antimicrobial peptides: camel, citropin, protegrin, temporin A and lipopeptide on HaCaT keratinocytes. Acta Pol Pharm 70:795–801

    CAS  PubMed  Google Scholar 

  • Barr SC, Rose D, Jaynes JM (1995) Activity of lytic peptides against intracellular Trypanosoma cruzi amastigotes in vitro and parasitemias in mice. J Parasitol 81:974–978

    Article  CAS  PubMed  Google Scholar 

  • Barrajón-Catalán E, Menéndez-Gutiérrez MP, Falco A et al (2010) Selective death of human breast cancer cells by lytic immunoliposomes: correlation with their HER2 expression level. Cancer Lett 290:192–203. doi:10.1016/j.canlet.2009.09.010

    Article  PubMed  Google Scholar 

  • Batista MN, Carneiro BM, Braga ACS, Rahal P (2014) Caffeine inhibits hepatitis C virus replication in vitro. Arch Virol. doi:10.1007/s00705-014-2302-1

  • Bernhaus A, Fritzer-Szekeres M, Grusch M et al (2009) Digalloylresveratrol, a new phenolic acid derivative induces apoptosis and cell cycle arrest in human HT-29 colon cancer cells. Cancer Lett 274:299–304. doi:10.1016/j.canlet.2008.09.020

    Article  CAS  PubMed  Google Scholar 

  • Bodek G, Kowalczyk A, Waclawik A et al (2005) Targeted ablation of prostate carcinoma cells through LH receptor using hecate-CGβ conjugate: functional characteristic and molecular mechanism of cell death pathway. Exp Biol Med 230:421–428

    CAS  Google Scholar 

  • Buolamwini JK (1999) Novel anticancer drug discovery. Curr Opin Chem Biol 3:500–509

    Article  CAS  PubMed  Google Scholar 

  • Castro MS, Cilli EM, Fontes W (2006) Combinatorial synthesis and directed evolution applied to the production of α-helix forming antimicrobial peptides analogues. Curr Protein Pep Sci 7:473–478

  • Cespedes GF, Lorenzon EN, Vicente EF, Soares Mendes-Giannini MJ, Fontes W, Castro MS, Cilli EM (2012) Mechanism of action and relationship between structure and biological activity of Ctx-Ha: a new ceratotoxin-like peptide from Hypsiboas albopunctatus. Protein Pept Lett 19:596–603

    Article  CAS  PubMed  Google Scholar 

  • Cilli EM, Pigossi FT, Crusca E et al (2007) Correlations between differences in amino-terminal sequences and different hemolytic activity of sticholysins. Toxicon 50:1201–1204. doi:10.1016/j.toxicon.2007.07.013

    Article  CAS  PubMed  Google Scholar 

  • Cordova CAS, Locatelli C, Assunção LS et al (2011) Octyl and dodecyl gallates induce oxidative stress and apoptosis in a melanoma cell line. Toxicol Vitr 25:2025–2034. doi:10.1016/j.tiv.2011.08.003

    Article  Google Scholar 

  • Crusca E, Rezende AA, Marchetto R et al (2011) Influence of N-terminal modifications on the biological activity, membrane interaction, and secondary structure of the antimicrobial peptide hylin-a1. Biopolymers 96:41–48. doi:10.1002/bip.21454

    Article  CAS  PubMed  Google Scholar 

  • Dathe M, Wieprecht T, Nikolenko H, Handel L, Maloy WL, MacDonald DL, Beyermann M, Bienert M (1997) Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and hemolytic activity of amphipathic helical peptides. FEBS Lett 403:208–212

    Article  CAS  PubMed  Google Scholar 

  • Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701. doi:10.1038/nrc1958

    Article  CAS  PubMed  Google Scholar 

  • Duval E, Zatylny C, Laurencin M, Baudy-Floc’h M, Henry J (2009) KKKKPLFGLFFGLF: a cationic peptide designed to exert antibacterial activity. Peptides 30:1608–1612

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg D, Weiss RM, Terwilliger TC (1984) The hydrophobic moment detects periodicity in protein hydrophobicity. Proc Natl Acad Sci USA 81:140–144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ferlay J, Shin H-R, Bray F et al (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917

    Article  CAS  PubMed  Google Scholar 

  • Fjell CD, Hiss JA, Hancock REW, Schneider G (2011) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov. doi:10.1038/nrd3591

    PubMed  Google Scholar 

  • Gao X, Zhang X, Wang Y, Peng S, Fan C (2015) An in vitro study on the cytotoxicity of bismuth oxychloride nanosheets in human HaCaT keratinocytes. Food Chem Toxicol 80:52–61. doi:10.1016/j.fct.2015.02.018

  • Gaspar D, Veiga AS, Castanho MARB (2013) From antimicrobial to anticancer peptides: a review. Front Microbiol. doi:10.3389/fmicb.2013.00294

  • Gawronska B, Leuschner C, Enrigh F, Hansel W (2002) Effects of a lytic peptide conjugated to β hCG on ovarian cancer: studies in vitro and in vivo. Gynecol Oncol 85:45–52

    Article  CAS  PubMed  Google Scholar 

  • Golubeva OY, Shamova OV, Orlov DS et al (2011) Synthesis and study of antimicrobial activity of bioconjugates of silver nanoparticles and endogenous antibiotics. Glass Phys Chem 37:78–84. doi:10.1134/S1087659611010056

    Article  CAS  Google Scholar 

  • Hansel W, Leuschner C, Gawronska B, Enright F (2001) Targeted destruction of prostate cancer cells and xenografts by lytic peptide-betaLH conjugates. Reprod Biol 1:20–32

    CAS  PubMed  Google Scholar 

  • Hansel W, Enright F, Leuschner C (2007a) Destruction of breast cancers and their metastases by lytic peptide conjugates in vitro and in vivo. Mol Cell Endocrinol 260–262:183–189. doi:10.1016/j.mce.2005.12.056

    Article  PubMed  Google Scholar 

  • Hansel W, Leuschner C, Enright F (2007b) Conjugates of lytic peptides and LHRH or βCG target and cause necrosis of prostate cancers and metastases. Mol Cell Endocrinol 269:26–33

    Article  CAS  PubMed  Google Scholar 

  • Henk WG, Todd WJ, Enright FM, Mitchell PS (1995) The morphological effects of two antimicrobial peptides, hecate-1 and melittin, on Escherichia coli. Scan Microsc 9:501–507

    CAS  Google Scholar 

  • Hirata A, Nokihara K (2014) Construction of peptide-vehicles, bioconjugates having modules for cancer cell surface capture and cell-penetrating peptide with anticancer agents. Tetrahedron Lett 55:4091–4094. doi:10.1016/j.tetlet.2014.05.086

    Article  CAS  Google Scholar 

  • Ho H-H, Chang C-S, Ho W-C et al (2013) Gallic acid inhibits gastric cancer cells metastasis and invasive growth via increased expression of RhoB, downregulation of AKT/small GTPase signals and inhibition of NF-κB activity. Toxicol Appl Pharmacol 266:76–85. doi:10.1016/j.taap.2012.10.019

    Article  CAS  PubMed  Google Scholar 

  • Howl J (2005) Peptide synthesis and applications, vol 31. Humana Press, Totowa

    Book  Google Scholar 

  • Huang Y, Wang X, Wang H et al (2011) Studies on mechanism of action of anticancer peptides by modulation of hydrophobicity within a defined structural framework. Mol Cancer Ther 10:416–426. doi:10.1158/1535-7163.mct-10-0811

    Article  CAS  PubMed  Google Scholar 

  • Hudecz F (2005) Synthesis of peptide bioconjugates. Methods Mol Biol 298:209–223

    CAS  PubMed  Google Scholar 

  • Hurtado C, Bustos MJ, Sabina P, Nogal ML, Granja AG, González ME, Gónzalez-Porqué P, Revilla Y, Carrascosa AL (2008) Antiviral activity of lauryl gallate against animal viruses. Antvir Ther 13:909–917

    Google Scholar 

  • Jamasbi E, Batinovic S, Sharples RA, Sani M-A, Robins-Browne RM, Wade JD, Separovic F, Hossain MA (2014) Melittin peptides exhibit different activity on different cells and model membranes. Amino Acids 46:2759–2766

    Article  CAS  PubMed  Google Scholar 

  • Kee HJ, Cho S-N, Kim GR et al (2014) Gallic acid inhibits vascular calcification through the blockade of BMP2–Smad1/5/8 signaling pathway. Vasc Pharmacol 63:71–78. doi:10.1016/j.vph.2014.08.005

    Article  CAS  Google Scholar 

  • Kitagawa S, Nabekura T, Kamiyama S et al (2005) Effects of alkyl gallates on P-glycoprotein function. Biochem Pharmacol 70:1262–1266. doi:10.1016/j.bcp.2005.07.013

    Article  CAS  PubMed  Google Scholar 

  • Ko T-C, Hour M-J, Lien J-C et al (2001) Synthesis of 4-alkoxy-2-phenylquinoline derivatives as potent antiplatelet agents. Bioorg Med Chem Lett 11:279–282

    Article  CAS  PubMed  Google Scholar 

  • Korani MS, Farbood Y, Sarkaki A et al (2014) Protective effects of gallic acid against chronic cerebral hypoperfusion-induced cognitive deficit and brain oxidative damage in rats. Eur J Pharmacol 733:62–67. doi:10.1016/j.ejphar.2014.03.044

    Article  CAS  PubMed  Google Scholar 

  • Kumar RV, Bhasker S (2014) Optimizing cervical cancer care in resource-constrained developing countries by tailoring community prevention and clinical management protocol. J Cancer Policy 2:63–73

    Article  Google Scholar 

  • Kumar CS, Leuschner C, Doomes EE et al (2004) Efficacy of lytic peptide-bound magnetite nanoparticles in destroying breast cancer cells. J Nanosci Nanotechnol 4:245–249

    Article  CAS  PubMed  Google Scholar 

  • Lebedyeva IO, Ostrov DA, Neubert J et al (2014) Gabapentin hybrid peptides and bioconjugates. Bioorg Med Chem 22:1479–1486

    Article  CAS  PubMed  Google Scholar 

  • Leuschner C, Enright FM, Gawronska B, Hansel W (2003) Membrane disrupting lytic peptide conjugates destroy hormone dependent and independent breast cancer cells. Breast Cancer Res Treat 78:17–27

    Article  CAS  PubMed  Google Scholar 

  • Lorenzón EN, Sanches PRS, Nogueira LG et al (2013) Dimerization of aurein 1.2: effects in structure, antimicrobial activity and aggregation of Cândida albicans cells. Amino Acids 44:1521–1528. doi:10.1007/s00726-013-1475-3

    Article  PubMed  Google Scholar 

  • Lutz J-F, Börner HG (2008) Modern trends in polymer bioconjugates design. Prog Polym Sci 33:1–39

    Article  CAS  Google Scholar 

  • Madlener S, Illmer C, Horvath Z et al (2007) Gallic acid inhibits ribonucleotide reductase and cyclooxygenases in human HL-60 promyelocytic leukemia cells. Cancer Lett 245:156–162. doi:10.1016/j.canlet.2006.01.001

    Article  CAS  PubMed  Google Scholar 

  • Merrifield RB (1963) Solid phase peptide synthesis 1: synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154

    Article  CAS  Google Scholar 

  • Mooney A, Corry AJ, O’Sullivan D et al (2009) The synthesis, structural characterization an in vitro anti-cancer activity of novel N-(3-ferrocenyl-2-naphthoyl) dipeptide ethyl esters and novel N-(6-ferrocenyl-2-naphthoyl) dipeptide ethyl esters. J Organomet Chem 694:886–894

    Article  CAS  Google Scholar 

  • Paredes-Gamero EJ, Martins MNC, Cappabianco FAM et al (2012) Characterization of dual effects induced by antimicrobial peptides: regulated cell death or membrane disruption. Biochim Biophys Acta 1820:1062–1072. doi:10.1016/j.bbagen.2012.02.015

    Article  CAS  PubMed  Google Scholar 

  • Pelin M, Sosa S, Pacor S, Tubaro A, Florio C (2014) The marine toxin palytoxin induces necrotic death in HaCaT cells through a rapid mitochondrial damage. Toxicol Lett 229:440–450. doi:10.1016/j.toxlet.2014.07.022

  • Pennarun B, Gaidos G, Bucur O et al (2013) killerFLIP: a novel lytic peptide specifically inducing cancer cell death. Cell Death Dis 4:894. doi:10.1038/cddis.2013.401

    Article  Google Scholar 

  • Ran S, Downes A, Thorpe PE (2002) Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res 62:6132–6140

    CAS  PubMed  Google Scholar 

  • Rivero-Müller A, Vuorenoja S, Tuominen M et al (2007) Use of hecate–chorionic gonadotropin β conjugate in therapy of lutenizing hormone receptor expressing gonadal somatic cell tumors. Mol Cell Endocrinol 269:17–25. doi:10.1016/j.mce.2006.11.016

    Article  PubMed  Google Scholar 

  • Rosés C, Carbajo D, Sanclimens G et al (2012) Cell-penetrating γ-peptide/antimicrobial undecapeptide conjugates with anticancer activity. Tetrahedron 68:4406–4412. doi:10.1016/j.tet.2012.02.003

    Article  Google Scholar 

  • Sarjit A, Wang Y, Dykes GA (2014) Antimicrobial activity of gallic acid against thermophilic Campylobacter is strain specific and associated with a loss of calcium ions. Food Microbiol 46:227–233. doi:10.1016/j.fm.2014.08.002

    Article  PubMed  Google Scholar 

  • Shin SY, Lee SH, Yand ST, Park EJ, Lee DG, Lee MK, Eom SH, Song WK, Kim Y, Hahm KS, Kim JI (2001) Antibacterial, antitumor and hemolytic activities of α-helical antibiotic peptide, P18 and its analogs. J Peptide Res 58:504–514

    Article  CAS  Google Scholar 

  • Slaninová J, Mlsorá V, Kroupová H, Alán L, Tunová T, Menicová L, Borovickova L, Fucík V, Cerovsky V (2012) Toxicity study of antimicrobial peptides from wild bee venom and their analogs toward mammalian normal and cancer cell. Peptides 33:18–26

    Article  PubMed  Google Scholar 

  • Snider C, Jayasinghe S, Hristova K, White SH (2009) MPEx: a tool for exploring membrane proteins. Protein Sci 18:2624–2628

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spector AA, Yorek MA (1985) Membrane lipid composition and cellular function. J Lipid Res 26:1015–1035

    CAS  PubMed  Google Scholar 

  • Sun J, Li Y, Ding Y et al (2014) Neuroprotective effects of gallic acid against hypoxia/reoxygenation-induced mitochondrial dysfunctions in vitro and cerebral ischemia/reperfusion injury in vivo. Brain Res 1589:126–139. doi:10.1016/j.brainres.2014.09.039

    Article  CAS  PubMed  Google Scholar 

  • Szakács G, Paterson JK, Ludwig JA et al (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5:219–234. doi:10.1038/nrd1984

    Article  PubMed  Google Scholar 

  • Utsugi T, Schroit AJ, Connor J et al (1991) Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res 51:3062–3066

    CAS  PubMed  Google Scholar 

  • Vicente EF, Basso LGM, Cespedes GF et al (2013) Dynamics and conformational studies of TOAC spin labeled analogues of Ctx(Ile21)-Ha peptide from Hypsiboas albopunctatus. PLoS One. doi:10.1371/journal.pone.0060818

    Google Scholar 

  • Vilar G, Tulla-Puche J, Alberício F (2012) Polymers and drug delivery systems. Curr Drug Deliv 9(4):367–394

    Article  CAS  PubMed  Google Scholar 

  • Yang Q-Z, Wang C, Lang L et al (2013) Design of potent, non-toxic anticancer peptides based on the structure of the antimicrobial peptide, temporin-1CEa. Arch Pharm Res 36:1302–1310. doi:10.1007/s12272-013-0112-8

    Article  CAS  PubMed  Google Scholar 

  • Yates C, Sharp S, Jones J et al (2011) LHRH-conjugated lytic peptides directly target prostate cancer cells. Biochem Pharmacol 81:104–110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • You BR, Park WH (2010) Gallic acid-induced lung cancer cell death is related to glutathione depletion as well as reactive oxygen species increase. Toxicol Vitr 24:1356–1362. doi:10.1016/j.tiv.2010.04.009

    Article  CAS  Google Scholar 

  • You BR, Moon HJ, Han YH, Park WH (2010) Gallic acid inhibits the growth of HeLa cervical cancer cells via apoptosis and/or necrosis. Food Chem Toxicol 48:1334–1340. doi:10.1016/j.fct.2010.02.034

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Conselho Nacional de Desenvolvimento Científico (CNPq) and Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) for financial support.

Conflict of interest

The authors declare that they have no conflict of intrest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Maffud Cilli.

Additional information

Handling Editor: M. S. Palma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanches, P.R.S., Carneiro, B.M., Batista, M.N. et al. A conjugate of the lytic peptide Hecate and gallic acid: structure, activity against cervical cancer, and toxicity. Amino Acids 47, 1433–1443 (2015). https://doi.org/10.1007/s00726-015-1980-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-015-1980-7

Keywords

Navigation